Voltage source
Keywords
electrical, node, bidirectional
Ports
Name | Type |
---|---|
port 1 | Electrical Node |
port 2 | Electrical Node |
input | Electrical Signal |
Properties
General Properties
Name | Default value | Default unit | Range |
---|---|---|---|
name Defines the name of the element. |
Voltage Source | - | - |
annotate Defines whether or not to display annotations on the schematic editor. |
true | - | [true, false] |
enabled Defines whether or not the element is enabled. |
true | - | [true, false] |
type Defines the element unique type (read only). |
Voltage Source | - | - |
description A brief description of the elements functionality. |
Voltage source | - | - |
prefix Defines the element name prefix. |
V | - | - |
model Defines the element model name. |
- | - | - |
library Defines the element location or source in the library (custom or design kit). |
- | - | - |
local path Defines the local path or working folder $LOCAL for the element. |
- | - | - |
url An optional URL address pointing to the element online help. |
- | - | - |
Standard Properties
Name | Default value | Default unit | Range |
---|---|---|---|
configuration Defines the voltmeter configuration. |
dual port | - | [single port, dual port |
series resistance Resistance. |
0 | Ohms | [0, +∞) |
====================================
Implementation Details
The element's s-parameters matrix is defined depending on the property ‘configuration’. If the ‘configuration’ property is set to ‘single port’, the relationship between the ‘Electrical Node’ and ‘Electrical Signal’ ports are defined as:
$$b_1 = \begin{bmatrix} \frac{1}{\sqrt{R_0}} & -1\end{bmatrix} \begin{bmatrix} V \\ a_1\end{bmatrix}$$
Where \(a_1\) is the incoming wave and \(b_1\) is the outgoing wave at the element port ‘port’. The input voltage \(V\) is defined at the port ‘input’. \(R_0\) is the internal characteristic impedance. Relationship between the electrical waves, current and voltage are defined by the following equations:
$$a_i(f)=\frac{1}{2}(\frac{V_i(f)}{\sqrt{R_0}} + \sqrt{R_0}\cdot I_i(f))$$
$$b_i(f)=\frac{1}{2}(\frac{V_i(f)}{\sqrt{R_0}} - \sqrt{R_0}\cdot I_i(f))$$
Where \(a_i(f)\) is the incoming wave, \(b_i(f)\) is the outgoing wave, \(V_i(f)\) is the voltage and \(I_i(f)\) is the current at port \(i\).
If the ‘configuration’ property is set to ‘dual port’, the relationships between the ‘Electrical Node’ and ‘Electrical Signal’ ports are defined as:
$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2\sqrt{R_0}} & 0 & 1 \\ -\frac{1}{2\sqrt{R_0}} & 1 & 0 \end{bmatrix} \begin{bmatrix} V \\ a_1 \\a_2 \end{bmatrix}$$
Where \(a_1\) is the incoming wave and \(b_1\) is the outgoing wave at the element port ‘port 1’, and \(a_2\) is the incoming wave and \(b_2\) is the outgoing wave at the element port ‘port 2’.
Optionally, the element supports a ‘series impedance’ \(R\). If the series impedance is greater than zero, for the single port configuration, the transfer function is defined as:
$$b_1= \begin{bmatrix} (\frac{1-A}{2\sqrt{R_0}}+\frac{B^2}{2\sqrt{R_0}(1+A)})& (A-\frac{B^2}{(1+A)})\end{bmatrix} \begin{bmatrix} V \\ a_1\end{bmatrix}$$
where
$$A=\frac{R}{R+2R_0}$$
and
$$B=\frac{2R_0}{R+2R_0}$$
The dual port configuration is:
$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} \frac{1-A}{2\sqrt{R_0}} & A & B \\ -\frac{B}{2\sqrt{R_0}} & B & A \end{bmatrix} \begin{bmatrix} V \\ a_1 \\a_2 \end{bmatrix}$$