Voltage reference port
Keywords
electrical, node, bidirectional
Ports
Name | Type |
---|---|
port 1 | Electrical Node |
port 2 | Electrical Node |
inout | Electrical Signal |
Properties
General Properties
Name | Default value | Default unit | Range |
---|---|---|---|
name Defines the name of the element. |
Voltage Reference Port | - | - |
annotate Defines whether or not to display annotations on the schematic editor. |
true | - | [true, false] |
enabled Defines whether or not the element is enabled. |
true | - | [true, false] |
type Defines the element unique type (read only). |
Voltage Reference Port | - | - |
description A brief description of the elements functionality. |
Voltage reference port | - | - |
prefix Defines the element name prefix. |
REF | - | - |
model Defines the element model name. |
- | - | - |
library Defines the element location or source in the library (custom or design kit). |
- | - | - |
local path Defines the local path or working folder $LOCAL for the element. |
- | - | - |
url An optional URL address pointing to the element online help. |
- | - | - |
Standard Properties
Name | Default value | Default unit | Range |
---|---|---|---|
configuration Defines the voltmeter configuration. |
dual port | - | [single port, dual port |
reference impedance Resistance. |
50 | Ohms | [0, +∞) |
====================================
Implementation Details
This element is a voltage source and voltmeter that allows for pushing and pulling electrical signals to and from electrical circuits at a given reference impedance. It allows for direct scattering data analysis of ‘Electrical Node’ circuits using the Electrical Network Analyzer.
The element s-parameters matrix is defined depending on the property ‘configuration’. If the ‘configuration’ property is set to ‘single port’, the relationships between the ‘Electrical Node’ and ‘Electrical Signal’ ports are defined as:
$$\begin{bmatrix} b_1 \\ V_{out} \end{bmatrix} = \begin{bmatrix} (\frac{1-A}{2\sqrt{R_0}}+\frac{B^2}{2\sqrt{R_0}(1+A)}) & (A-\frac{B^2}{1+A}) \\ B-\frac{AB}{1+A} & (1-B)2\sqrt{R_0}+\frac{AB2\sqrt{R_0}}{1+A} \end{bmatrix} \begin{bmatrix} V_{in} \\ a_1 \end{bmatrix}$$
where
$$A=\frac{R}{R+2R_0}$$
and
$$B=\frac{2R_0}{R+2R_0}$$
Where \(a_1\) is the incoming wave and \(b_1\) is the outgoing wave at the element port ‘port’. The input voltage \(V_{in}\) is defined at the input of ‘inout’ and the output voltage \(V_{out}\) is defined at the output of ‘inout’. \(R\) is defined by the property ‘reference impedance’ and \(R_0\) is the internal characteristic impedance. Relationship between the electrical waves, current and voltage are defined by the following equations:
$$a_i(f)=\frac{1}{2}(\frac{V_i(f)}{\sqrt{R_0}} + \sqrt{R_0}\cdot I_i(f))$$
$$b_i(f)=\frac{1}{2}(\frac{V_i(f)}{\sqrt{R_0}} - \sqrt{R_0}\cdot I_i(f))$$
Where \(a_i(f)\) is the incoming wave, \(b_i(f)\) is the outgoing wave, \(V_i(f)\) is the voltage and \(I_i(f)\) is the current at port \(i\).
If the ‘configuration’ property is set to ‘dual port’, the relationships between the ‘Electrical Node’ and ‘Electrical Signal’ ports are defined as:
$$\begin{bmatrix} b_1 \\ b_2 \\ V_{out} \end{bmatrix} = \begin{bmatrix} \frac{1-A}{2\sqrt{R_0}} & A & B \\ -\frac{B}{2\sqrt{R_0}} & B & A \\ B & (1-B)2\sqrt{R_0} & -A2\sqrt{R_0} \end{bmatrix} \begin{bmatrix} V_{in} \\ a_1 \\a_2 \end{bmatrix}$$
Where \(a_1\) is the incoming wave and \(b_1\) is the outgoing wave at the element port ‘port 1’. And \(a_2\) is the incoming wave and \(b_2\) is the outgoing wave at the element port ‘port 2’.