
Photonic Inverse Design using the Adjoint Method

Workshop: Optimize a splitter in one hour!

Lumerical Inc. May 2019

input

Download workshop materials at:

<u>https://kx.lumerical.com/t/lumerical-and-siepicfab-inverse-design-workshops/34471</u>

Ensure you download and install the latest version of FDTD Solutions from https://www.lumerical.com/downloads/customer/

Necessary if you want to perform layout of your final design for submission to SiEPIC

- Install Klayout (<u>http://www.klayout.de/build.html</u>)
- Install the SiEPIC Ebeam PDK by following the instructions at <u>https://github.com/lukasc-</u> ubc/SiEPIC EBeam PDK/wiki/Installation-instructions

Lumerical's Suite of Tools

DEVICE Suite Multiphysics

FDTD Electromagnetics MODE Waveguide Component Design **DGTD** Finite Element Electromagnetics **FEEM** Eigenmode Analysis **CHARGE** Charge Transport **HEAT** Heat Transport **STACK** Optical Stack Analysis

SYSTEM Suite System & Circuit

INTERCONNECT PIC Simulation **CML Compiler** Automated CML Generation **System Element Library Extension** Laser Element Library Extension **Verilog-A Runtime API**

Partner Interoperability

Foundry Resources Automation API Python Integration

INTEROPERABILITY, AUTOMATION & FOUNDRY SUPPORT Interfaces

Lumopt: Python Based Inverse Design for Lumerical FDTD

- Lumopt: open source implementation of the adjoint method
- Collaboration with Lumerical over past year
- Targets integrated photonics
- Uses FDTD Solutions for simulation
- Uses Lumerical Automation API
- Now included with FDTD Solutions

Adjoint shape optimization applied to electromagnetic design

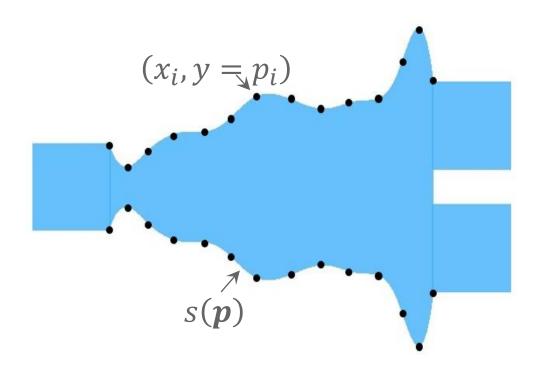
Christopher M. Lalau-Keraly,^{1,*} Samarth Bhargava,¹ Owen D. Miller,² and Eli Yablonovitch¹

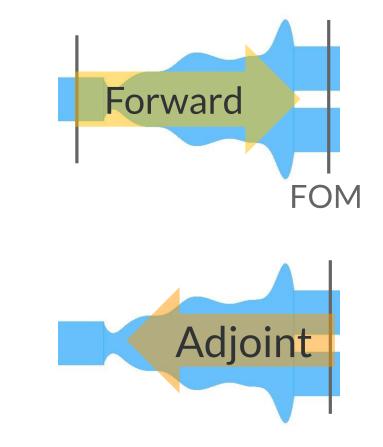
¹Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, USA ²Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ^{*}chrisker@eecs.berkeley.edu

Optics Express, Vol 21, Issue 18, 2013 <u>https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-18-21693</u>

https://github.com/chriskeraly/lumopt

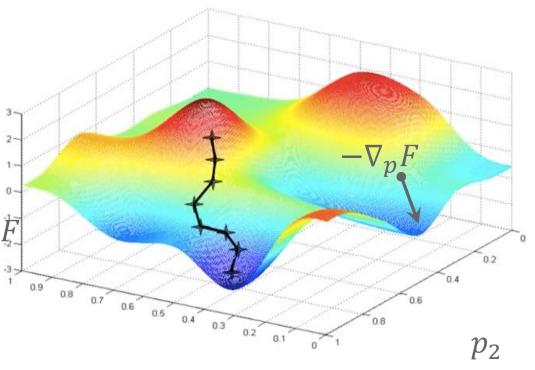
s Iss	sues	Marketpla	ce Explore	,					ب -	+ -	
					• Watch ◄	4	★ Star	5	∛ Fork	2	
cts 0	[🗉 Wiki	Insights								
		-1									


Parametric Shape based adjoint optimization


Parametric shape

- Defines design space
- **Optimization parameters**

Adjoint sensitivity analysis


- Efficiently compute gradient
- **2 FDTD simulations**
- Independent of *#* parameters

Gradient based optimization • Highly efficient optimization

Uses more physics of device

 p_1

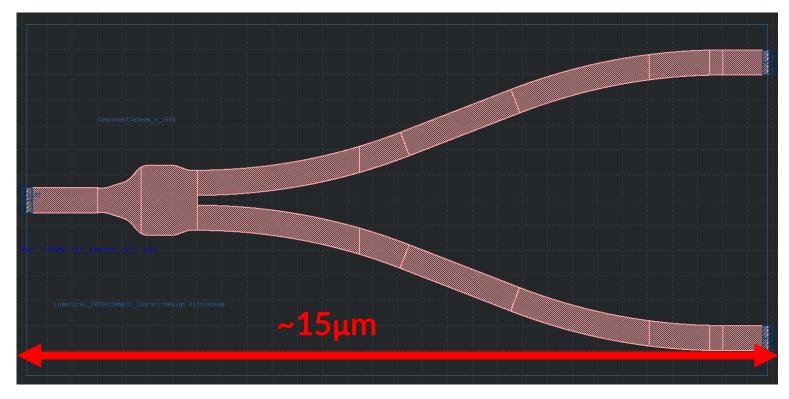
https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

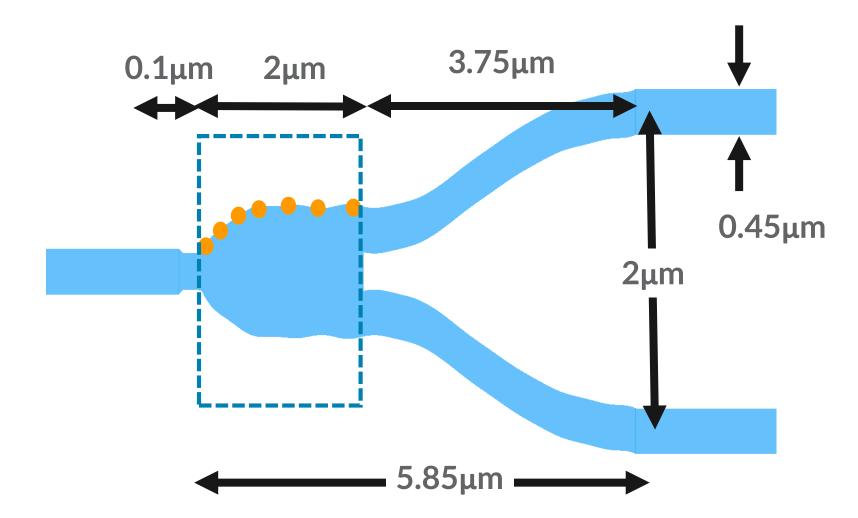
Workshop outline

The challenge

- Constraints
- Options you can change
- The figure of merit to determine the winner

Steps:


- Review constraints
- Make your design choices
- Start running optimization
- Generate 3D results and extract S parameters
- Generate full test layout by running Python script we've prepared with Klayout
- Inspect the full layout



The challenge

- Can we make a smaller splitter?
- Can we ensure broadband operation?

https://github.com/lukasc-ubc/SiEPIC_EBeam_PDK

A compact and low loss Y-junction for submicron silicon waveguide Yi Zhang, et al, Optics Express Vol. 21, Issue 1, pp. 1310-1316 (2013)

• Parametric shape with output waveguides

Design choices

Number of control points for the spline = number of optimization parameters

• Currently set to 10

Spline boundary condition

• 'clamped' or 'not-a-knot' – currently 'clamped' which means derivative is 0 at boundaries

Bandwidth

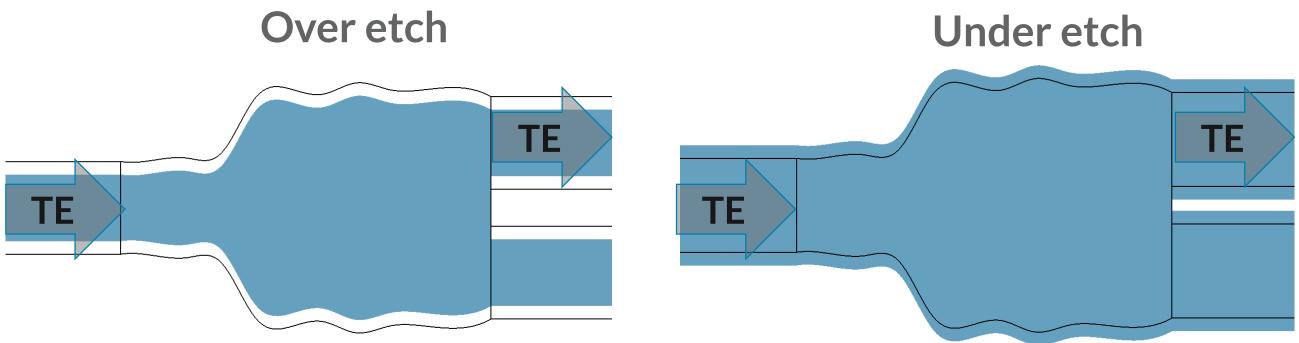
Currently set to C+L band

Delta (for robust design)

- If delta==0 we do normal optimization
- If delta!=0 (see next slide)
- Currently delta = 20nm

Note that adjoint optimization is a steepest descent method

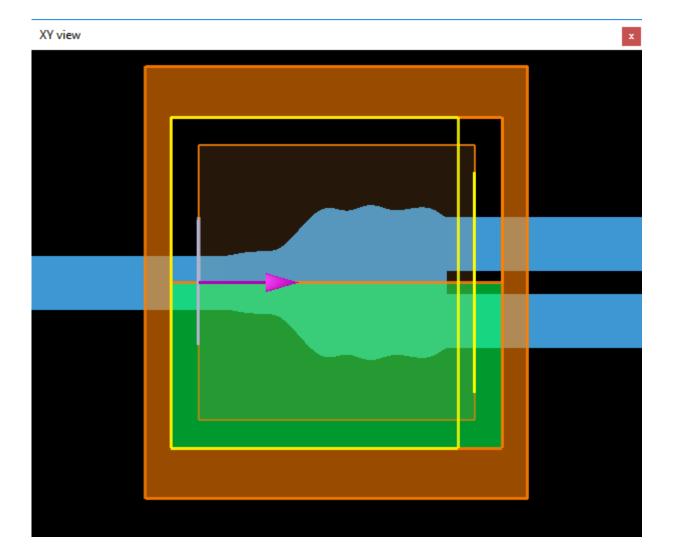
 Adding more constraints can actually smoothen the FOM landscape and allow you to avoid local minima BUT too many constraints will reduce the FOM

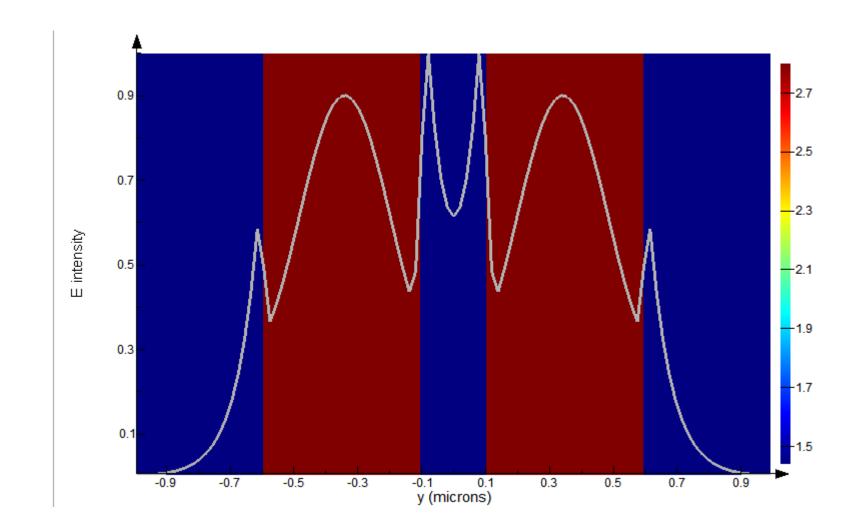


What does delta do?

If delta is not zero, we do co-optimization

- "Over etch" slightly smaller than nominal (-delta)
- "Under etch" slightly larger than nominal (+delta)


FOM = sum of FOMs from both simulations



What FOM are we optimizing?

FOM is the power transmitted to the symmetric waveguide mode

From 3D simulation including bent waveguide arms we extract the S matrix for the nominal design (no overetch/under-etch)

The best design has the highest **design_score** where:

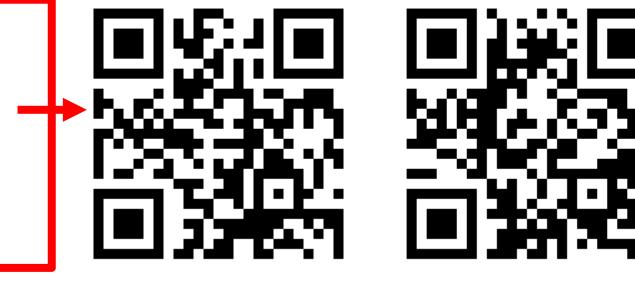
- design_score = Tmin_factor * bandwidth_factor
- Tmin_factor = atan(100*(Tmin-0.91))/pi+0.5
- bandwidth_factor = bandwidth/100nm
- Tmin is the minimum transmission over the bandwidth

Figure 6: 0.9 0.8 0.7 min_factor .5.0 .4.0 0.3 0.2 0.1 0.65

There is a big cost to allowing your minimum transmission to fall below about 0.3 dB !

Running the examples in FDTD Solutions

Method 1: Easy Method 2: Power user 1. Open FDTD Solutions **1.** Install Python, SciPy, Jupyter 2. Open .py file in FDTD script editor 3. Press run script 3. Open *.ipynb in Jupyter

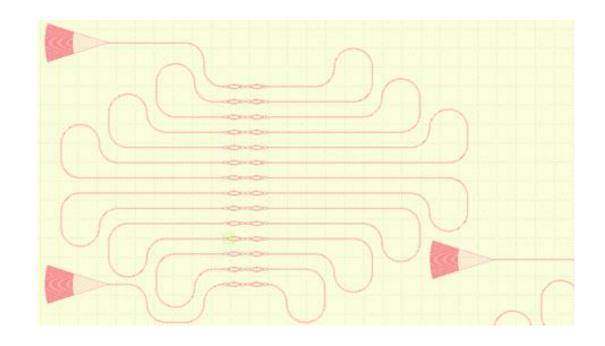

Uses Python and Lumopt provided with FDTD **Solutions**

Requires FDTD Solutions 2019a R6 (8.21.1933) Software installer available on USB drive or web Windows: http://lumeri.ca/zeqxy MacOS: http://lumeri.ca/7d952

2. Configure Python path to Lumerical modules in <FDTD folder>/api/python

Windows

Mac



Making the full test layout

We provide a scripts called make_test_layout.lsf and make_test_layout.py Run by

- Open make_test_layout.lsf and press run
 - You may need to edit the script depending on your Klayout installation folder
- Power users
 - Opening a command prompt and change to the directory where you are working
 - Run <KLayout install folder >\klayout_app.exe -r make_test_layout.py

Inspect with KLayout

Submit your design

See <u>https://www.linkedin.com/pulse/openebl-fabrication-test-passive-silicon-photonic-lukas-chrostowski?trk=portfolio_article-card_title_</u>

Key points

- Submission:
 - Filename openEBL_USERNAME.gds "openEBL" is case sensitive; replace USERNAME with your name. Append "_A", "_B", etc., if submitting multiple layouts.
 - Top cell openEBL_USERNAME
 - Upload your GDS layout file here: https://bit.ly/2M4hPPT The secret is the material that the waveguides are made of (hint: chemical element with atomic number 14)
- Merge verification •
 - Download the following files, to check that your design is here and correct. There may be a 1-5 minute delay between submission and merge.
 - Merged GDS file: <u>http://upload.siepic.ubc.ca/openEBL/openEBL.gds</u>
 - Log file: <u>http://upload.siepic.ubc.ca/openEBL/openEBL.txt</u>
 - Automated measurement coordinate list: <u>http://upload.siepic.ubc.ca/openEBL/openEBL coords.txt</u>
- Fabrication results: •
 - Will be shared via Dropbox.com: <u>http://bit.ly/1fiQe7l</u> and https://www.dropbox.com/sh/030suvs0vk4pw66/AABDah85xHeMPgyARms73pCda?dl=0. To download a particular folder, replace the =0 with =1.

Disclaimer: Nothing is guaranteed. Provided as-is, best effort. The designs submitted here are publicly accessible. For educational purposes. Space limited; first-come first-served.

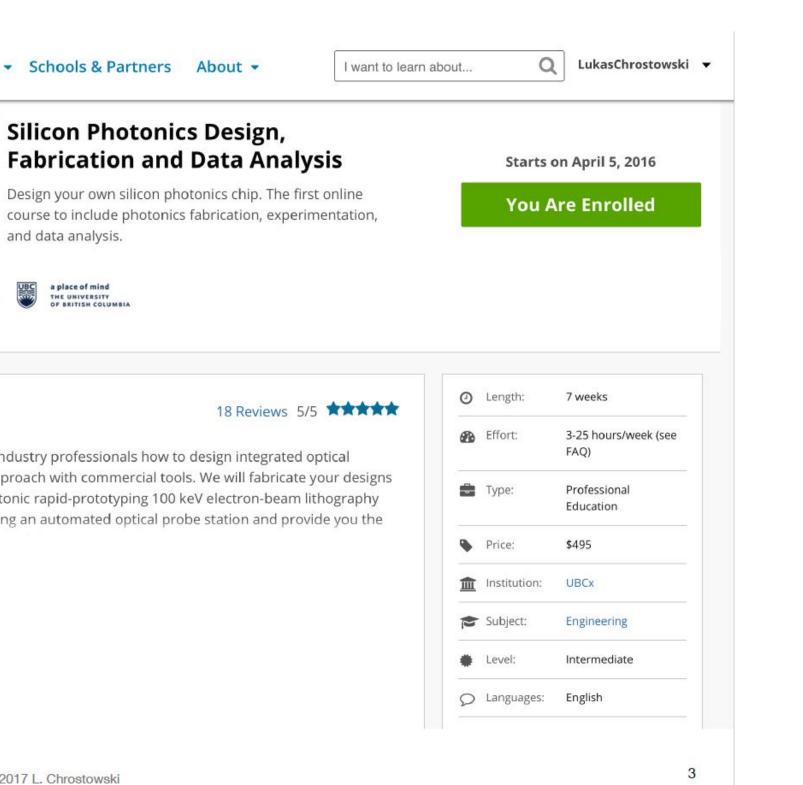
Lukas Chrostowski's edX course!

Courses - How It Works - Schools & Partners About -

and data analysis.

About this course

This short course teaches students and industry professionals how to design integrated optical devices and circuits, using a hands-on approach with commercial tools. We will fabricate your designs using a state-of-the-art (\$5M) silicon photonic rapid-prototyping 100 keV electron-beam lithography facility. We will measure your designs using an automated optical probe station and provide you the


See more

What you'll learn

- · Optical modelling tools
- Mask layout tools
- · Design of optical devices and circuits
- Data analysis techniques

© 2017 L. Chrostowski

Want more information?

edu KX KB app \succ IX

edu.lumerical.com online solver courses kx.lumerical.com **community forum** kb.lumerical.com **product reference guides** apps.lumerical.com application specific walkthroughs info@lumerical.com **information on product licensing** ix.lumerical.com **product improvement ideas**

Start your free 30-day evaluation today: www.lumerical.com/evaluate

company/lumerical

@lumerical

© Lumerical Inc.

user/lumerical

